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Abstract

Many state-of-the-art natural language understanding (NLU) systems are based on

pretrained large language models (LLMs). These models make inferences using knowl-

edge of various types observed at pretrain and inference time. However, the integra-

tion and reasoning abilities of NLU systems for different knowledge types from multi-

ple knowledge sources have been largely understudied.

In order to evaluate these abilities systematically, we propose a test suite of corefer-

ence resolution tasks that require reasoning over multiple facts. We create three main

dataset variants that vary in terms of which knowledge sources contain the relevant

facts and evaluate state-of-the-art coreference resolution models on our dataset.

Our results show that with task-specific training and detailed annotations, some

LLM-based NLU systems have the ability to reason on-the-fly over knowledge ob-

served at pretrain and inference time. For the proposed task, the usefulness of knowl-

edge in a source seems to depend on the knowledge type: background knowledge

is more useful when drawn from pretrain-time parameters, while knowledge about

specific entities seems to be better observed at inference time. However, performance

generally is sensitive to a range of factors such as the underlying LLM architecture and

annotation format.
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Sommaire

De nombreux systèmes modernes de traitement automatique du language sont basés

sur les modèles de langage massivement préentrainés. Les modèles de ce type font

des prédictions en utilisant de l’information de différent types, obtenue au moment

du pré-entrainement et de l’inférence. Cependant, les effets de l’origine et du type des

informations sur l’intégration des connaissances et sur les capacités de raisonnement

des modèles massifs de langages ont été sous-étudiées.

Afin d’évaluer systématiquement ces capacités, nous proposons une série de tests

de résolution de coréférence qui nécessitent un raisonnement sur plusieurs faits. Nous

créons trois variantes principales d’ensembles de données qui varient en fonction des

sources de connaissances qui contiennent les faits pertinents et nous évaluons des

modèles de résolution de coréférence de pointe sur notre ensemble de données.

Nos résultats montrent qu’avec une formation spécifique à cette tâche et des anno-

tations détaillées, certains systèmes de compréhension du langage basés sur les mod-

èles massivement préentrainés ont la capacité de raisonner à la volée sur les connais-

sances observées au moment du pré-entrainement et de l’inférence. Pour la tâche pro-

posée, l’utilité de la connaissance dans une source semble dépendre du type de con-

naissance: les connaissances sur le contexte général sont plus utiles lorsqu’elles sont

tirées des paramètres de pré-entrainement, tandis que les connaissance spécifiques à

des entités semblent être mieux observée au moment de l’inférence. Cependant, la per-

formance est généralement sensible à une série de facteurs tels que l’architecture des

modèles massivement pré-entrainés sous-jacente et le format d’annotation.
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Previously Published Material

The KITMUS test suite with experiments as motivated in Chapter 1 and described in

Chapters 3 and 4 was previously published in the Proceedings of the 61st Annual

Meeting of the Association for Computational Linguistics as Arodi et al. (2023). As

co-first author, Martin Pömsl contributed to all aspects of the dataset creation, experi-

ment design, and evaluation.

All co-first authors have consented in writing to the use of the previously published

material in this thesis. The PRETRAIN-TIME ENTITY-SPECIFIC variant as described

in Section 3.2.3 and experiments using it are novel and the sole creation of Martin

Pömsl. Together, the previously published KITMUS dataset and the new PRETRAIN-

TIME ENTITY-SPECIFIC variant are referred to as KITMUS+ throughout this thesis.
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Chapter 1

Introduction

Motivation

In recent years, advances in the pretraining of large language models (LLMs) have

brought significant performance increases to a wide variety of downstream tasks for

natural language understanding (NLU) systems (Raffel et al., 2020; Brown et al., 2020).

With the increased availability of sophisticated NLU systems thanks to the public re-

lease of LLM weights (Touvron et al., 2023) and the provision of commercial APIs (Ope-

nAI, 2023), the need for evaluating these systems’ abilities and limitations is becoming

more pronounced.

Many NLU tasks that these systems are deployed for require reasoning over knowl-

edge (Guu et al., 2020; Petroni et al., 2021). This is true not only for inherently knowledge-

intensive tasks such as the question answering and fact verification (Liu et al., 2021),

but also for many other downstream tasks relevant for real-world applications (Piktus

et al., 2022).

Given the large size of modern LLMs, one approach to provide NLU systems with

the relevant knowledge is to exploit knowledge memorization during pretraining. This

approach initially led to considerable success for downstream tasks such as question
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answering (Roberts et al., 2020), but reaches its limits for tasks that require facts that

have not been observed during pretraining because of domain or recency differences

(Xu et al., 2023). An alternative to relying solely on pretrain-time knowledge is pro-

viding additional knowledge explicitly as part of the inference-time inputs, as imple-

mented in the popular retrieve-then-predict paradigm (Lewis et al., 2020).

Consider the passage “John saw the newly elected president on TV.” Pretrained

parameters can conceivably contain information about what presidents do and what

a TV is, but they cannot contain reliable knowledge about who John is (since “John”

is an instance-specific identifier) or who the president is (since the president might

have changed since pretraining). It follows that successful systems for knowledge-

intensive NLU tasks require the ability to integrate both pretrain-time and inference-

time knowledge.

To effectively use these two knowledge sources, models must (1) retrieve relevant

information from both knowledge sources, (2) adjudicate between potentially conflict-

ing information, and (3) integrate multiple units of information and reason over them

on the fly. For example, pretrain-time parameters might contain the knowledge that

Donald Trump is the president of the United States, but inference-time inputs might

state that Joe Biden is the president. Based on the contextual information available in

a task, models must infer the correct president.

Recent work by Longpre et al. (2021) examines the effects of knowledge conflicts

across multiple knowledge sources. In this work, we aim to more broadly inves-

tigate the behaviour of NLU systems faced with tasks requiring both pretrain-time

and inference-time knowledge. While Longpre et al. (2021) study how models handle

conflicting facts, our goal is to evaluate whether models can combine complementary

knowledge drawn from multiple sources rather than choose between sources.

In order to facilitate systematic evaluation of these knowledge integration capabil-

ities, we propose a dataset for the task of knowledge-intensive coreference resolution.
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Caplinger is a food preparation worker. Berkowitz is a labourer. Eells is a judge.
Thedford is a secretary. At the improvisation class, Berkowitz, Eells, Caplinger, and
Thedford started a conversation. The classes usually begin before work. He told anec-
dotes from a career of typing letters and keeping records for a company.
[Answer: Thedford]

Figure 1.1 Example from KITMUS+. To resolve the pronoun (in red), a
model needs to draw on entity-specific knowledge about an entity’s occu-
pation as well as on background knowledge about what kind of work the
occupation entails.

We select the coreference resolution task as an instance of NLU tasks since it is has an

extensive history as a test bed for reasoning over knowledge (Levesque et al., 2012;

Rahman and Ng, 2012; Durrett and Klein, 2013) and is a downstream task that is of-

ten approached with LLM-based NLU models such as BERT (Devlin et al., 2019) and

ELMo (Peters et al., 2018).

We design the task such that the resolution of pronouns in our dataset requires two

types of knowledge:

• Entity-specific knowledge such as “Ruth Bader Ginsburg is a judge.”

• Background knowledge such as “Judges decide cases in courts of law.”

Generally, background knowledge is learned during the pretraining of LLMs at

pretrain-time, while entity-specific knowledge is typically observed at inference time.

In our dataset, we vary the availability of both required knowledge types such that they

may be available either as pretrain-time or inference-time knowledge. An example

from our dataset where entity-specific knowledge is provided at inference time and

background knowledge is obtained at pretrain time is shown in Figure 1.1.
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Statement of Contributions

In this work, we propose a task and dataset for the evaluation of Knowledge InTegration

from MUltiple Sources: the KITMUS+ test suite. We describe the rationale as well as the

process for the creation of this dataset. We systematically choose and control the avail-

ability of knowledge of different types (background and entity-specific) in different

sources (pretrain-time or inference-time). Using this dataset, we evaluate the ability of

established LLM-based coreference resolution models to reason over knowledge avail-

able in different sources and report the results of several ablation experiments. The

KITMUS+ test suite is publicly available on GitHub1.

We find that with task-specific training and detailed annotations, some of the eval-

uated coreference resolution systems have the ability to reason on-the-fly over knowl-

edge observed at pretrain and inference time. For the proposed task, the usefulness

of knowledge in a knowledge source seems to depend on the knowledge type: back-

ground knowledge is more useful when drawn from pretrain-time parameters, while

knowledge about specific entities seems to be better observed at inference time. How-

ever, performance generally is sensitive to a range of factors such as the annotation

format and the underlying LLM’s size and architecture. We do not find consistent

benefits to providing knowledge redundantly both at pretrain and inference time.

Organisation of This Work

In the following, we first provide an overview of concepts and relevant strains of work

in Chapter 2. Building on this, we propose a task and dataset for systematically eval-

uating knowledge integration in Chapter 3. We describe experiments that evaluate

established models on the dataset in Chapter 4 and discuss the implications. Finally,

we summarise our conclusions and provide an outlook on future work in Chapter 5.

1https://github.com/mpoemsl/kitmus/tree/kitmus-plus

https://github.com/mpoemsl/kitmus/tree/kitmus-plus
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Chapter 2

Background

In this chapter, we review literature related to two relevant strains of work in recent

years: approaches to evaluating the knowledge integration capabilities of NLU sys-

tems and the use of the task of coreference resolution as a test bed for reasoning over

knowledge. These strains are relevant to this work since it presents a novel approach

to utilize the task of coreference resolution to evaluate the knowledge integration ca-

pabilities of NLU systems.

While presenting these strains, we also highlight concepts and works that were

used in the experiments for this work such as the underlying architecture of the eval-

uated coreference resolution systems (Lee et al., 2017) and approaches to probing for

pretrain-time knowledge in LLMs (Petroni et al., 2019).

2.1 Knowledge Integration in NLU Systems

Many NLU tasks require the integration of knowledge for successful completion. This

is intuitively the case for downstream tasks like open-domain question answering

(Roberts et al., 2020) that require the generation of true facts given only a query, but

additional knowledge can also be required to successfully tackle tasks like fact ver-
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ification (Thorne et al., 2018) and reading comprehension (Long et al., 2017). In the

following we provide an overview of the dimensions along which knowledge integra-

tion is commonly analyzed as well as approaches to knowledge integration evaluation

explored in previous literature.

2.1.1 Dimensions of Knowledge Integration

Knowledge integration is often analyzed along two dimensions: the source and the

type of knowledge being integrated by a NLU system.

Knowledge Types

There are different types of knowledge that may be required for NLU tasks. While

there is no clear consensus about a taxonomy or terminology of knowledge types for

NLU tasks, previous works often make a distinction between entity-specific knowl-

edge and background knowledge as described in the following (Petroni et al., 2019;

Lauscher et al., 2020; Onoe et al., 2021).

Entity-specific knowledge conveys information about specific entities. It is typ-

ically presented in the form of is-a relations such as “Ruth Bader Ginsburg is a

judge.” This type of knowledge is variously also called “entity knowledge” or “factual

knowledge”. Resources like Wikipedia and Wikidata (Farda-Sarbas and Müller-Birn,

2019) attempt to capture this knowledge systematically in relational knowledge bases.

With T-REx, Elsahar et al. (2018) present a resource that provides access to this kind

of knowledge in a form amenable to NLU systems. Recent work emphasising the im-

portance of entity-specific knowledge in NLU systems includes Chen et al. (2021) and

Heinzerling and Inui (2021).

Background knowledge is information about relations that are commonly true in

the world. It is typically presented in the form of rules such as “judges decides cases in

courts of law” or hyponympy/hypernymy relations such as “every X is a Y.” This type
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of knowledge is variously also called “common sense knowledge” or “world knowl-

edge”, but the latter term is sometimes also applied to entity-specific knowledge. Re-

sources like ConceptNet (Speer et al., 2018) and ATOMIC (Sap et al., 2019) attempt to

capture this type of knowledge. Recent work about the role of background knowledge

in NLU systems includes Lin et al. (2020) and Porada et al. (2022).

Knowledge Sources

Progress on many NLU tasks has recently been driven by improvements in pretrained

LLMs, which can be adapted to specific tasks via finetuning (Peters et al., 2018; Devlin

et al., 2019; Raffel et al., 2020; Touvron et al., 2023; OpenAI, 2023). The fundamental

idea of LLMs is to learn representations that are useful for predicting missing text (Ju-

rafsky and Martin, 2023). These learned representations have been found to capture

many aspects of the semantics of the input text (Tenney et al., 2019). Language mod-

eling as an optimization objective is amenable to large-scale training since it does not

require annotated data - the training data can be created from large collections of un-

structured texts such as C4 (Raffel et al., 2020), The Pile (Gao et al., 2020), or ROOTS

(Laurençon et al., 2022).

BERT (Devlin et al., 2019) and ELMo (Peters et al., 2018) were among the first in-

fluential LLMs to result in large gains on NLU tasks. While BERT is built using the

Transformer architecture (Vaswani et al., 2017) , which is the underlying architecture

of many modern successful LLMs (Brown et al., 2020; Touvron et al., 2023), ELMo is

based on recurrent LSTMs (Hochreiter and Schmidhuber, 1997). Both are often in-

corporated into task-specific models for NLU tasks and finetuned with considerable

success (Rogers et al., 2020).

LLM-based NLU systems must draw on a variety of knowledge sources to make

successful inferences. These knowledge sources can be categorized into two classes

based on the time of observation, which we call knowledge sources: pretrain-time
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knowledge and inference-time knowledge.

Pretrain-time knowledge is knowledge acquired during language modeling pre-

training and stored in parameters. This knowledge source is also called “parametric

knowledge” in related literature. LLMs such as BERT (Devlin et al., 2019) and ELMo

(Peters et al., 2018) memorize a considerable amount of knowledge in their parame-

ters, which has been the subject of extensive studies such as Petroni et al. (2019) and

Kassner and Schütze (2020). However, this pretrain-time knowledge is necessarily lim-

ited in scope by the parameter count of the LLM (Roberts et al., 2020) and may not be

applicable to the domain of the task at hand (Xu et al., 2023). Additionally, since this

knowledge was observed at the time of LLM pretraining, it can quickly become out-

dated. The updating of knowledge stored in a LLM’s parameters is the subject of active

work (De Cao et al., 2021; Meng et al., 2022), but not yet sufficiently robust to be useful

for many applications (Hoelscher-Obermaier et al., 2023).

Inference-time knowledge is knowledge supplied at inference time as part of the

textual inputs of a LLM. This knowledge source is also called “contextual knowledge”

in related literature. In recent work, LLMs have been shown to benefit greatly from

task-specific knowledge imbued through few-shot demonstrations at inference time

(Brown et al., 2020; Wei et al., 2022a). Additionally, a common approach to address

the shortcomings of pretrain-time knowledge is to complement it by retrieving up-to-

date and relevant texts and providing them at inference time to LLMs (Guu et al., 2020;

Lewis et al., 2020; Piktus et al., 2022).

2.1.2 Evaluating Knowledge Integration

Evaluating pretrain-time knowledge integration has been the subject of extensive

study once the usefulness of LLMs such as BERT (Devlin et al., 2019) for downstream

tasks became apparent.

One influential approach to evaluate LLMs’ ability to retrieve memorized knowl-
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edge is the LAMA probe (Petroni et al., 2019). They propose a “fill-in-the-blank” cloze

infilling task that treats LLMs such as BERT and ELMo as knowledge bases for rela-

tional knowledge. In their work, a LLM is considered to have access to a (subject,

relation, object) triple such as (Dante, born-in, Florence) if it can ac-

curately predict the masked object in a cloze statement such as “Dante was born in

___.”

To compute the completion of the blank in a way that is comparable across differ-

ent model architectures, the authors follow the natural training objective of the LLMs.

BERT is a masked language model (Devlin et al., 2019), which means its training objec-

tive is to predicted the correct replacement of a [MASK] token from the surrounding

non-masked tokens in a text. Accordingly, the authors query for the completion of a

blank by masking the corresponding token and following the decoding procedure of

BERT’s language modeling head. ELMo on the other hand is a bidirectional language

model (Peters et al., 2018), meaning it separately attempts to predict a missing token

from the left-hand context in the forward direction and the right-hand context in the

backward direction. Following the objective defined by Peters et al. (2018), the LAMA

authors average the forward and backward probabilities from the corresponding soft-

max layers to make a prediction for the blank.

One limitation of the LAMA probe is that it is restricted to single-token answers,

since multi-token decoding would introduce additional confounding factors in the

form of beam search hyperparameters obscuring the knowledge retrieval evaluation.

The authors find that LLMs such as BERT are able to reproduce both background

knowledge as captured in ConceptNet (Speer et al., 2018) and knowledge about spe-

cific entities as captured in T-REx (Elsahar et al., 2018).

In their follow-up work, Kassner and Schütze (2020) use the same methodology

to infer completions for prompts regarding language use phenomena observed in hu-

mans. They find that in contrast to humans, the evaluated LLMs are prone to make
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contradictory completions (e.g. predict “fly” as completion for both “Birds can ___”

and “Birds cannot ___”) and sensitive to misprimes such as “Talk? Birds can ___”, for

which LLMs predict the completion “talk”. They found that the ability of LLMs to

retrieve facts from pretrain-time parameters observed by Petroni et al. (2019) is some-

times brittle and not necessarily ideal for reasoning over all types of knowledge (Kass-

ner and Schütze, 2020).

Evaluating inference-time knowledge integration has gained importance primar-

ily in the context of retrieval-based methods, which address the shortcomings of pretrain-

time knowledge (staleness, lack of coverage) by retrieving relevant texts for a query

and providing it to the model at inference time (Guu et al., 2020; Lewis et al., 2020;

Piktus et al., 2022).

A systematic approach to evaluating LLMs’ ability to integrate inference-time knowl-

edge is proposed in the KILT benchmark for knowledge-intensive language tasks (Petroni

et al., 2021). They present a collection of NLU tasks grounded in a large Wikipedia

corpus to facilitate research on models that must access specific information to solve

a task. KILT is an “in-KB” resource in that the evidence required to answer each of

the 3.2M queries is contained within the provided corpus. They evaluate a number

of baselines, among them systems that rely only on pretrain-time knowledge as well

as those that retrieve and provide knowledge from the corpus at inference time using

methodology proposed by Karpukhin et al. (2020). The authors find that inference-

time knowledge integration leads to much better downstream performance for the

proposed tasks.

Evaluating knowledge integration from multiple sources is a largely understud-

ied subject. One exception is the work by Longpre et al. (2021) on model behavior

when faced with conflicting entity-specific knowledge from multiple sources. They

achieve this by modifying existing question answering datasets that are commonly

tackled using retrieval-based methods. The authors identify a subset of instances
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that require entity-specific knowledge contained both in the pretrain-time parameters

and inference-time inputs. For this subset, they substitute the relevant entity in the

inference-time inputs, thereby creating a knowledge conflict between the two sources.

The authors find that established LLM-based question answering systems tend to have

an overreliance on memorized pretrain-time knowledge and propose finetuning on

their dataset to mitigate the issue. Follow-up work further investigating conflicts in

knowledge sources for question answering includes Chen et al. (2022) and Neeman

et al. (2023). While this line of work focuses on model behavior when faced with con-

flicting facts from different sources, our work investigates systems’ ability to reason

over complementing information from pretrain-time and inference-time knowledge

sources.
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2.2 Coreference Resolution as Reasoning over Knowledge

Coreference resolution is a task that has an extensive history as a test bed for reason-

ing over knowledge. In the following, we first provide an overview of the task of

coreference resolution and common annotation formats. We then describe established

methods for coreference resolution and zoom in on previous work related to reasoning-

based coreference resolution.

2.2.1 Task Definition

Coreference resolution is the task of determining whether two mentions refer to the

same entity (Jurafsky and Martin, 2023). The mentions may be noun phrases, names,

pronouns, or other referring expressions. In modern literature (and in this work as

well), coreference resolution is often considered to be an end-to-end task that also in-

cludes the detection of mentions, e.g. whether a span of tokens refers to any entity

at all. While mention detection is often considered a comparatively easy step, it can

introduce an additional error source for end-to-end coreference resolution systems.

There are different types of task formulations in coreference resolution. In gen-

eral coreference resolution, which is annotated for example in the canonical dataset

OntoNotes (Hovy et al., 2006), coreferences between all types of mentions are consid-

ered. Querying for general coreference resolution is often realized as assigning clus-

ters to token spans, since this allows for the annotation of multiple possibly nested

coreferences. Pronoun coreference resolution on the other hand is often restricted to

name-pronoun coreferences and can be posed as a binary classification task, as is the

case in the Gendered Ambiguous Pronouns (GAP) dataset proposed by Webster et al.

(2018). Other datasets such as Quoref (Dasigi et al., 2019) pose coreference resolution

as a question answering task that requires span selection in response to a specific ques-

tion.
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2.2.2 Annotation Formats

The various task formulations are also reflected in different annotation types. The

CoNLL 2012 format (Pradhan et al., 2012), which is used to annotate the coreference

clusters in OntoNotes, contains token and sentence boundaries, Penn Treebank POS

tags (Marcinkiewicz, 1994), and gold coreference clusters for all entity mentions. This

means that all mentions of an entity are exhaustively annotated in a single cluster.

Models that operate on the CoNLL format predict these clusters, which involves both

detecting mentions and clustering them.

In contrast, GAP (Webster et al., 2018) uses a tab-separated value format which al-

lows for the annotation of only two entities and only one mention per entity (excluding

the pronoun), so mentions of other entities or additional mentions of the same entities

remain un-annotated. Models that operate on the GAP format are presented with ex-

actly two mentions and for each of them make a binary decision whether or not they

are corefering with a pronoun. The GAP format task is more restricted in that models

do not have to detect mentions and there are at most two entities per instance.

2.2.3 Methods for Coreference Resolution

Various methods have been proposed for coreference resolution, ranging from the rule-

based algorithm proposed by Hobbs (1977) to machine learning methods with hand-

engineered features by Ng and Cardie (2002) to the first neural end-to-end system by

Lee et al. (2017).

End-to-end neural coreference resolution: In their influential work, Lee et al. (2017)

propose to leverage neural text representations for coreference resolution using a men-

tion ranking architecture. Their architecture considers all spans up to a maximum

length as mention candidates. They prune the space of mentions using unary scoring

based on learned span representations and then infer a distribution P (y) over possible

antecedents spans y ∈ Y (x) for each mention span x.
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This distribution P (y) is defined as the softmax over pairwise coreference scores

s(x, y):

P (y) =
es(x,y)∑︁

y′∈Y (x) e
s(x,y′)

The pairwise coreference scoring function s consists of the unary mention scorer

sm(·) and the binary antecedent scorer sa(x, y). Using these scorers, the pairwise coref-

erence score s(x, y) is defined as:

s(x, y) =

⎧⎪⎨⎪⎩0 if y = ϵ

sm(x) + sm(y) + sa(x, y) if y ̸= ϵ

ϵ is here a dummy antecedent which signifies that a mention does not have a corre-

sponding antecedent. By fixing s(x, ϵ) = 0, the authors ensure that coreference is only

predicted if at least one non-dummy score is higher than zero.

The scoreres sm and sa are non-linear mappings from span representation vectors

to scalar scores with learned weights.

For any vector span representation x, sm(x) is defined as follows:

sm(x) = wm · FFNNm(x)

Here · denotes the dot product and wm is a learned weight vector. FFNN denotes

a feedforward neural network with ReLU (Glorot et al., 2011) activation and a learned

weights matrix.

For any two vector span representations x and y, sa(x, y) is defined as follows:

sa(x, y) = wa · FFNNa([x, y, x⊙ y,ϕ(x, y)])

Here ⊙ denotes the element-wise product and wa is a learned weight vector. ϕ(x, y)



2 Background 15

is a feature vector encoding metadata such as speaker, genre, and position distance

between spans x and y in the text.

The system predicts the most likely clustering given the inferred antecedent dis-

tributions for all mentions in a text. Using supervision of gold coreference clusters,

the model weights are learned by optimizing the marginal log-likelihood of the correct

antecedents.The authors find that the system can successfully learn to generate useful

mention candidates and determine their antecedents (Lee et al., 2017).

Higher-order coreference resolution: In a later refinement, Lee et al. (2018) intro-

duce an iterative procedure to improve span representations by including information

about the current expected antecedent for each mention atx at time t. This is imple-

mented via an attention-like sum of antecedent representations scaled by the current

inferred antecedent distribution P t(y):

atx =
∑︂

y∈Y (X)

P t(y) · xt

The mention representation for the next iteration xt+1 is then computed via weighted

interpolation between atx and xt. This aims to ensure that the predicted clusters are

not only locally but also globally consistent by propagating information from each an-

tecedent prediction to all others, thereby making the prediction process higher-order.

In their experiments, Lee et al. (2018) find that while second-order coreference with

t ∈ (1,2) yields improvements, the performance increases become diminishingly small

for t > 2.

Coarse-to-fine pruning: Since the iterative higher order process is much more com-

putationally intensive, Lee et al. (2018) also introduce a mention pruning mechanism

by including a computationally less demanding pairwise score sc(x, y) as an additional

summand in the definition of s(x, y). The reduction in resource usage comes from com-

puting the full sum s(x, y) lazily only for those pairs (x, y) which already show high
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scores in the summands sm(x), sm(y), and sc(x, y). Through the use of this pruning

heuristic, the higher-order inference procedure becomes computationally feasible.

Modern coreference resolution systems: Today’s state-of-the-art coreference reso-

lution systems are still largely built on the mention ranking architecture proposed in

Lee et al. (2017) and refined in (Lee et al., 2018), but make use of better span represen-

tations derived from LLMs as showcased in C2F (Lee et al., 2018) which uses ELMo

(Peters et al., 2018) and BERT4Coref (Joshi et al., 2019) which uses BERT (Devlin et al.,

2019). As more powerful LLMs come available, their representations also lead to bet-

ter coreference resolution performance, as exemplified by the recent adaptation of T5

(Raffel et al., 2020) for coreference resolution by Porada et al. (2023). This shows that

coreference resolution is a NLU task to which task-specific models based on LLMs are

well-suited.

External knowledge for coreference resolution: Prior work has shown that inte-

grating world knowledge can lead to improvements in coreference solvers, emphasis-

ing the need for knowledge beyond that contained in the pretrained parameters. Bean

and Riloff (2004) learn caseframe co-occurrence statistics, which they use to predict

coreference. Rahman and Ng (2012); Zhang et al. (2019); Aralikatte et al. (2019); Emami

et al. (2019) showed improved results using external knowledge supervision.

2.2.4 Reasoning for Coreference Resolution

There is a large body of work studying the exploitation of linguistic knowledge about

shallow cues such as gender, position, and number cues for naturally occurring corefer-

ence resolution as annotated in OntoNotes (Durrett and Klein, 2013). Other approaches

incorporate additional properties like semantic roles as features on the unrestricted

task of general coreference resolution (Baker et al., 1998; Chambers and Jurafsky, 2009).

In a departure from this, the Winograd Schema Challenge (WSC) (Levesque et al.,

2012; Rahman and Ng, 2012) posed coreference resolution as a semantic reasoning
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task and inspired a number of specialized datasets such as GAP (Webster et al., 2018)

and Winogrande (Sakaguchi et al., 2020) where coreference resolution is used as a test

bed for reasoning over knowledge and cases cannot be solved with shallow features

(Emami et al., 2019; Rahman and Ng, 2012). WSC is considered an established format

for testing reasoning abilities, as demonstrated by its inclusion in the standard bench-

marks GLUE (Wang et al., 2018) and BigBench (Srivastava et al., 2023) recast as natural

language inference.

Recent work has shown that the mention ranking architecture established by Lee

et al. (2017) paired with modern LLMs is well suited for both general coreference res-

olution as required for OntoNotes and reasoning-based coreference resolution as re-

quired for WSC (Toshniwal et al., 2021). However, generalization from one task to

the other is generally poor (Porada et al., 2023), which emphasises the need for task-

specific finetuning to effectively address reasoning-based tasks such as the one pre-

sented in this work.
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Chapter 3

Evaluating Knowledge Integration

In order to facilitate systematic evaluation of knowledge integration capabilities, we

propose a dataset for the task of knowledge-intensive coreference resolution. We choose

coreference resolution as an instance of NLU tasks since it is has an extensive history of

use as a test bed for reasoning over knowledge and is a downstream task that is often

approached with models based on LLMs such as BERT (Devlin et al., 2019) and ELMo

(Peters et al., 2018), for which the notion of pretrain-time knowledge is well defined.

In this chapter, we describe the design and implementation of the proposed test

suite as well as its three main variants. Finally, we describe the procedures we used to

validate the resulting dataset.

3.1 The KITMUS Test Suite

3.1.1 Overview

We evaluate the knowledge integration capability of coreference resolution models

from two different knowledge sources as described in Section 2.1.1:

• Pretrain-time: knowledge accumulated in the parameters during LLM pretrain-

ing
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• Inference-time: knowledge observed as part of the input text or prompt

To design KITMUS, we formulate a reasoning-based coreference resolution task which

requires access to two facts. This can be viewed as an instance of two-hop reasoning.

We systematically vary the presence of these facts across the knowledge sources to

evaluate the models.

As an instantiation of the idea of presenting two facts, we experiment with the

following two knowledge types as described in Section 2.1.1:

• Entity-specific: occupation of an entity such as “Rosenow is an architect.”

• Background: situation typical for an occupation such as “architects design build-

ings and houses.”

Figure 3.1 Schema of knowledge types in KITMUS+.

For example, consider the following task to predict whether Mujica or Rosenow is

the correct antecedent of the pronoun “he.”

Mujica is a model. Rosenow is an architect. At the bus station, Mujica and Rosenow

connected. Public transports are eco-friendly. He shared experiences from a career of

designing buildings and houses. [Answer: Rosenow]
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Here, the occupations are model and architect, and the situational cue is designing

building and houses. Both knowledge types are required in order to resolve this corefer-

ence. An illustration of this knowledge schema can be found in Figure 3.1.

Each instance of the KITMUS task consists of two fragments of text that are con-

catenated: 1) a knowledge text—containing the inference-time knowledge that models

are given access to—and 2) a task text—consisting of the coreference task that models

solve.

3.1.2 Creation

To construct KITMUS, we manipulate which entities are mentioned in each instance,

what occupations those entities have, what situations those occupations pertain to,

what contexts they are mentioned in, and whether noise is present. Each entry is struc-

tured to first (1) introduce the entities, (2) then place them in the same location, and

(3) finally, place one of them in a situation related to their occupation. If additional

knowledge is given at inference-time, this is preceded by a knowledge text containing

that knowledge.

The dataset entries are generated using hand-crafted English-language templates

and sampling from a variety of resource pools to fill the template slots. The use of

templates facilitates control over the source a certain type of knowledge is stored in,

which may not be possible to do with a natural dataset.

We aim to minimize the likelihood of models learning to exploit any spurious corre-

lations in the templates or resources and to promote data diversity using the following

methods:

• We use multiple templates for each sentence. Examples are shown in Table 3.1.

• We sample from diverse resource pools to fill template slots as detailed in Section

3.1.3.
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• We include location-dependent noise statements that act as distractors and serve

to vary the distance between entities.

• We create canonical train, validation, and test splits for each variant that are gen-

erated using disjunct subsets of templates and resources.

With these measures, we ensure that all entity names, occupations, situations, loca-

tions, templates, and noise statements that occur in the test instances do not occur in

the train instances.

At {location}, {mentions} met.
At {location}, {mentions} ran into each other.
At {location}, {mentions} started a conversa-
tion.
At {location}, {mentions} came across each
other.
At {location}, {mentions} encountered each
other.
At {location}, {mentions} bumped into each
other.
At {location}, {mentions} connected.
{mentions} met at {location}.
{mentions} ran into each other at {location}.
{mentions} started a conversation at {location}.
{mentions} came across each other at {loca-
tion}.
{mentions} encountered each other at {loca-
tion}.
{mentions} bumped into each other at {loca-
tion}.
{mentions} connected at {location}.

(a) Meet Sentence Templates

After a long day at work {situation},
{pronoun} was happy to relax.
{pronoun} told anecdotes from a career
of {situation}.
{pronoun} reflected on whether {situ-
ation} for a living was a good career
choice.
When a question related to {situation}
arose, {pronoun} offered a professional
opinion.
{pronoun} was relieved to unwind after a
demanding day at work {situation}.
{pronoun} was glad to unwind after a
long day at work {situation}.
{pronoun} shared experiences from a
career of {situation}.
{pronoun} pondered whether choosing
{situation} as a career was a wise decision.

(b) Pronoun Sentence Templates

Table 3.1 Templates used to introduce (“Meet Sentence”) and refer to
(“Pronoun Sentence”) entities in KITMUS+.

3.1.3 Resources

We collect 20,000 last names as entities, 60 common occupations and their associated

job descriptions as situations and 112 common meet-up places as locations from a mix
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of governmental and other publicly available resources.

Pronouns are sampled randomly from both the gendered pronouns he and she

as well as gender-indefinite pronouns such as singular they and the neopronouns ey

and ze. In doing so, we aim to follow the practices established by the gender-inclusive

coreference resolution dataset GICoref (Cao and Daumé III, 2020). Ideally, we would

want the distribution of pronouns to approximate the frequency in naturally occurring

text, but few reliable statistics exist to estimate them. We include 40% he, 40% she,

10% they, and 10% neopronouns.

Noise statements are sampled randomly from a collection of statements based on

the selected location in order to maintain the natural flow of the text. Each location is

associated with 25 noise sentences. These sentences are automatically generated using

GPT-2 (Radford et al., 2019) and then manually verified by the authors not to include

cues related to any entity or occupation.

Entity Names are sampled from a pool of the 20,000 most frequent last names in

the 2010 U.S. census.1 We use last names as entity names in order to avoid introducing

gender-related cues. We discard those last names that are also first names. The order

of occurrence of entity names within a template is also randomized. We assume that

there is no confounding pretrain-time knowledge based on common entity last names

in the models.

Occupations consist of a curated list of 60 common occupations compiled by scrap-

ing a career website2 and the US Labor census data.3 Following Cao and Daumé III

(2020), we remove referential gender cues from occupations such as “man” in “fire-

man.” Jobs pertaining to very specific domains or related to one of the locations where

entities meet are removed from the list.

Situations are assembled using the occupation descriptions of the scraped occupa-
1https://www.census.gov/topics/population/genealogy/data/2010_surnames.

html
2https://ca.indeed.com/career-advice/finding-a-job/common-jobs
3https://www.bls.gov/emp/tables/emp-by-detailed-occupation.htm

https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://ca.indeed.com/career-advice/finding-a-job/common-jobs
https://www.bls.gov/emp/tables/emp-by-detailed-occupation.htm
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tions. We manually filter the pairs of descriptions that are semantically similar, such as

descriptions of an accountant and an analyst.

Locations are derived from a curated list of 112 locations scraped from a website

of common meet-up places.4 We manually filter out locations that could provide inad-

vertent surface cues related to the entities’ occupation, nationality, or gender.

3.1.4 Format

Each variant in KITMUS consists of a train, validation, and test split with 2000, 400,

and 2000 examples respectively. The size of KITMUS is comparable to that of the GAP

dataset (Webster et al., 2018), which similarly tests for a specific phenomenon in am-

biguous pronoun coreference resolution. Ablation experiments with a larger train set

size can be found in Section 4.3.1.

We create subtasks with two, three, and four entities for each variant. In this work,

we mostly consider the four entity subtask by default, since it is the most challenging

subtask. Ablation experiments with fewer entities can be found in Section 4.3.1.

The test suite is provided in two different formats which are commonly used by

state-of-the-art coreference solvers: the CoNLL 2012 format (Pradhan et al., 2012) and

the GAP format (Webster et al., 2018). The CoNLL 2012 format allows for the com-

prehensive annotation of all mentions of an entity including in the knowledge text.

The GAP format, however, allows for the annotation of only two entities and only one

mention per entity. In this work, we use the CoNLL 2012 format by default, since it

has the most informative annotations. Ablation experiments with the GAP format can

be found in Section 4.3.3.

4https://www.happierhuman.com/meet-new-people/

https://www.happierhuman.com/meet-new-people/
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3.2 KITMUS+ Variants

(a) BASE

(b) INFERENCE-TIME BACKGROUND

(c) PRETRAIN-TIME ENTITY-SPECIFIC

Figure 3.2 Variants of KITMUS+ by mapping of knowledge types to knowl-
edge sources.

The three main variants of KITMUS+ represent three mappings of knowledge types

to knowledge sources.

• BASE: Background knowledge is pretrain-time and entity-specific knowledge is

inference-time

• INFERENCE-TIME BACKGROUND: Both background and entity-specific knowl-

edge are inference-time
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• PRETRAIN-TIME ENTITY-SPECIFIC: Both background an entity-specific knowl-

edge are pretrain-time

The BASE and INFERENCE-TIME BACKGROUND variants are part of the previously

published KITMUS test suite. Together with the new PRETRAIN-TIME ENTITY-SPECIFIC

variant, they constitute the KITMUS+ test suite. An illustration of the three main vari-

ants of KITMUS+ is shown in Figure 3.2.

Given that the models evaluated in this work incorporate canonical weights of pre-

trained LLMs, it is not possible to create a variant where background knowledge is

inference-time and entity-specific knowledge is pretrain-time, since that would require

the pretraining data to contain real-world entities with fictional occupations. However,

we believe these three variants to be sufficient to shed light on the behavior of the eval-

uated models in a variety of settings.

3.2.1 Base

In the BASE variant, entity-specific knowledge is provided at inference time and back-

ground knowledge about occupations is assumed to be pretrain-time knowledge. This

is the setting most in line with the language modeling training of LLMs, since there

are far more entities than occupations in the real-world and the probability of encoun-

tering a new named entity at inference time is much higher than encountering a new

occupation.

The entity-specific knowledge is provided in the knowledge text via with a tem-

plate mapping entities to their respective occupations using the phrase “is a.” The

entities are fictional and only identified via their last name, which ensures that LLMs

cannot have observed their occupation during pretraining. An example from this vari-

ant:

Fresquez is a secretary. Frates is a politician. Horner is a newsreader. Barlett is a book-

keeper. At the power yoga class, Barlett, Frates, Fresquez, and Horner came across each
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other. A yoga class helps live a happier life. She told anecdotes from a career of seeking

an elected seat in government. [Answer: Frates]

With this variant, we aim to evaluate whether models have the ability to integrate

and reason over both pretrain-time and inference-time knowledge effectively.

3.2.2 Inference-Time Background (ITB)

In order to evaluate whether a model can solve the proposed task using exclusively

inference-time knowledge (i.e., in the absence of pretrain-time knowledge), we intro-

duce fictional “knowledge.” Fictional knowledge such as “the work of a mornisdeiver

is gupegaing advaily” is unlikely to have been observed during pretraining, in contrast

to real-world knowledge which is likely to have been observed. As in the BASE vari-

ant, the entities are fictional, ensuring that entity-specific knowledge about them was

not observed at pretrain time. Thus, in this variant, both knowledge types are fictional

and not contained in the pretrained parameters. An example from this variant:

The work of a towcer is lopening ackly. The work of a vangiwer is aughuing ominly.

Yoshimura is a contaker. Rhoads is a towcer. The work of an agovember is rethiling orsuly.

Cobian is a vangiwer. Kutz is an agovember. The work of a contaker is acmastatting

rigeorly. Yoshimura, Kutz, Cobian, and Rhoads ran into each other at the communal

dining restaurant. The coffee cake was quite good. After a long day at work acmastatting

rigeorly, he was happy to relax. [Answer: Yoshimura]

Background knowledge about occupations maps occupations to situations that are

typical for the occupation, such as “astronomer” and “studying the stars and the uni-

verse.” To make background knowledge fictional, either the occupation, the situation,

or both have to be fictional. For situations, we furthermore distinguish between lev-

els of fictionality: 1) character-level fictional situations that use novel words and 2)

word-level fictional situations that use existing words but describe novel occupations.

Example texts resulting from different forms of fictionality can be seen in Table 3.2.
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Occupation Situation Example

Real CharFict The work of a politician is ehemting smorbtly.
Chichester is a politician[...]

Real WordFict The work of a politician is controlling the pool of
an aircraft by using its directional flight controls.
Chichester is a politician[...]

CharFict Real The work of a mirituer is seeking an elected seat in
government. Chichester is a mirituer[...]

CharFict CharFict The work of a mirituer is ehemting smorbtly.
Chichester is a mirituer[...]

CharFict WordFict The work of a mirituer is controlling the pool of
an aircraft by using its directional flight controls.
Chichester is a mirituer. [...]

Table 3.2 Different combinations of fictional occupations and situations in
the INFERENCE-TIME BACKGROUND variant.

Creation: To create fictional background knowledge that maps occupations to situ-

ations, we create fictional occupations and fictional situations. Following the method-

ology of Malkin et al. (2021), we generate 60 names of fictional occupation by sampling

from a character-level LSTM language model.

We generally follow the methodology of Malkin et al. (2021) in creating fictional

occupations and situations. To bias the model towards strings that can be used as oc-

cupation names, we train it on a reversed sequence of characters and prompt with the

suffix er. We manually filter the words to eliminate unpronounceable or pre-existing

English words.

We employ the following two methodologies to generate fictional situations: 1)

character-level fictional situations—like the fictional occupations—are generated with

the suffix prompts ing and ly, and 2) word-level fictional situations are generated

by randomly shuffling existing words with the same POS tags across real situation

descriptions followed by manual filtering based on semantic plausibility.
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Since there are no obvious advantages to either combination of fictionality, we re-

port results for the INFERENCE-TIME BACKGROUND variant as a range over all five

subvariants.

3.2.3 Pretrain-Time Entity-Specific (PTES)

In addition to the variants provided in the original KITMUS test suite, we create a

PRETRAIN-TIME ENTITY-SPECIFIC variant where the entity-specific knowledge is not

provided at inference time, but already contained in the parameters at pretrain-time.

We achieve this by using the names of well-known real-world entities along with their

true occupations and pronouns that LLMs are likely to have observed during pretrain-

ing. As in the BASE variant, the background knowledge is assumed to be contained in

the pretrain-time parameters as well. Thus, in this variant, both knowledge types are

pretrain-time and no knowledge text is given. An example from this variant:

Mamo Clark, Stephanie Beatriz, Pat Nixon, and Patricia Anthony started a conversation

at the dog park. The dogs here are lovely. When a question related to writing books or

novels professionally arose, she offered a professional opinion.

[Answer: Patricia Anthony, a well-known science-fiction author]

Creation: We turn to the Wikidata/Wikipedia ecosystem (Farda-Sarbas and Müller-

Birn, 2019) as a source of knowledge about entities that are likely to have been observed

by LLMs during pretraining, since many LLM pretraining corpora include Wikipedia

(Gao et al., 2020; Laurençon et al., 2022).

We retrieve an initial list of candidate entities by querying the Wikidata SPARQL

endpoint5 for entities that have the occupation (“Property:P106”) property for each

occupation in the KITMUS dataset. As a proxy for being well-known, we limit the

search to those entities that have a corresponding article in English Wikipedia and

keep only the 200 entities with the most sitelinks. In order to mitigate the bias that

5https://query.wikidata.org/

https://query.wikidata.org/
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there are more English Wikipedia articles about men than any other gender, we repeat

this query for all possible sex or gender (“Property:P21”) values.

This process resulted in 3948 candidate entities, most of which belonged to a hand-

ful of occupations that are likely to have an Wikipedia article such as actor, astronomer,

or politician. Other occupations such as janitor or cashier had no or only very few

Wikidata entries. We drop entities that were associated with multiple occupations,

which is quite often the case for some occupation pairs such as actor and model or

politician and lawyer.

For the variant to fulfill its purpose, the entities’ occupations must be known to the

LLMs evaluated in this work. While for real-world occupations such as “politician”,

one can reasonably assume that LLMs like BERT (Devlin et al., 2019) and ELMo (Peters

et al., 2018) observed instances during training, however even for well-known entities

it is not necessarily guaranteed that a specific LLM has explicitly been exposed to their

occupation.

For that reason, we filter the candidate entities based on a LAMA probe (Petroni

et al., 2019) to ensure that both BERT and ELMo can predict the correct occupation for

this entity. A LAMA probe uses LLMs’ ability to solve “fill-in-the-blank” cloze state-

ments to test whether a model can fill in a certain [MASK] token that requires specific

knowledge. The idea is that the model can only select the correct token among a large

number of possibilities if the knowledge is stored in its parameters, which were deter-

mined at pretrain-time. We use the template {name} is a [MASK]. and compare

the probabilities of [MASK] being filled with the correct profession for the entity with

{name}. We only keep those candidate entities for which both LLMs can accurately

predict the occupation.

This procedure left entities with the following five occupations and associated fre-

quencies:

• author: 291
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• actor: 79

• model: 8

• politician: 6

• painter: 1

To increase the count of the underrepresented occupations model6, politician7,

painter8, we retrieved additional candidates for these occupations from the corre-

sponding English Wikipedia categories sorted by number of pageviews as an alternate

proxy for entities’ popularity.

After another round of filtering based on the LAMA probe applied to BERT and

ELMo, 348 entities9 remained. The occupation count was high enough to create a suf-

ficient number of non-repeating data samples through random slot filling. To have a

full complement of name, occupation, and pronoun for each real-world entity, Wiki-

data was queried for the personal pronoun (“Property:P6553”) property, with a

heuristic based on the sex or gender value as a fallback for those entities without

the personal pronoun property.

Bias: Both the Wikipedia/Wikidata ecosystem (Callahan and Herring, 2011; Hube,

2017) and the training data of BERT/ELMo (Ahn and Oh, 2021; Jentzsch and Turan,

2022) are human-curated and have biases. Through the collection and filtering process,

6https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=
user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=
views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:
Models_(profession)

7https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=
user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=
views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:
20th-century_politicians

8https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=
user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=
views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:
Painters

9https://github.com/mpoemsl/kitmus/blob/kitmus-plus/resources/wiki_
entities.csv

https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:Models_(profession)
https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:Models_(profession)
https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:Models_(profession)
https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:Models_(profession)
https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:20th-century_politicians
https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:20th-century_politicians
https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:20th-century_politicians
https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:20th-century_politicians
https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:Painters
https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:Painters
https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:Painters
https://pageviews.wmcloud.org/massviews/?platform=all-access&agent=user&source=category&range=latest-20&subjectpage=0&subcategories=1&sort=views&direction=1&view=list&target=https://en.wikipedia.org/wiki/Category:Painters
https://github.com/mpoemsl/kitmus/blob/kitmus-plus/resources/wiki_entities.csv
https://github.com/mpoemsl/kitmus/blob/kitmus-plus/resources/wiki_entities.csv
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these biases are reflected in the selection of entities. Therefore this new variant does

not conform to the standards of the fictional entities in the original KITMUS dataset in

terms of pronoun and occupation balance.

To name a few biases, the majority of model entities use the pronoun “she”, while

the majority of politician entities use the pronoun “he”. Additionally, due to the

use of popularity proxies in the filtering process, many occupations such as carpen-

ter are not represented in the final set of entities. Similarly, none of the entities that

remained after the LAMA probe uses gender-indefinite pronouns, so they are not rep-

resented in this variant. However, at the level of individual instances, these biases

should not allow models to learn any shortcuts, since all entities in a text use the same

pronoun but have distinct occupations. For more details on imbalances in this variant,

see Section 3.3.
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3.3 KITMUS+ Validation

In order to ensure the suitability of the proposed test suite for its intended purpose, we

validate the created dataset variants both quantitatively and qualitatively.

3.3.1 Descriptive Statistics

The instances of KITMUS+ are generated by randomly sampling from resource pools

which are distinct for each split, thus ensuring that there is no overlap between train,

validation, and test splits. For the BASE and INFERENCE-TIME BACKGROUND variants,

that means any occupation and name occurring in one split cannot occur in another.

For the PRETRAIN-TIME ENTITY-SPECIFIC variant, that means any entity occurring in

one split cannot occur in another.

Weighted random sampling ensures that for the BASE and INFERENCE-TIME BACK-

GROUND variant, all occupations and pronoun combinations occur with a frequency

approaching the predefined pronoun sampling ratio of 40% he, 40% she, 10% they,

and 10% neopronouns such as ey and ze. Since the entities in the PRETRAIN-TIME

ENTITY-SPECIFIC variant are drawn from the real world as depicted by Wikidata, this

is not the case for this variant.

Table 3.3 shows the most, median, and least frequent combinations of occupation

and pronoun per variant. While in the BASE and INFERENCE-TIME BACKGROUND

variants, the most frequent combinations make up only a small share among the 20

occupations and six pronouns per split, the PRETRAIN-TIME ENTITY-SPECIFIC variant

features only five occupations and two pronouns.

Additionally, the PRETRAIN-TIME ENTITY-SPECIFIC variant is reflective of various

pronoun-occupation biases as described in Section 3.2.3. This should not affect the dif-

ficulty of solving an individual instance, but notably decreases the diversity of training

data which may affect generalization behavior.
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Variant Frequency Combination

Descriptor Share Occupation Pronoun

BASE
most 2.42% labourer he

median 0.45% plumber they
least 0.14% judge ze

INFERENCE-TIME most 2.27% administrative assistant she
BACKGROUND median 0.45% janitor they

least 0.15% firefighter ey

PRETRAIN-TIME most 12.54% model she
ENTITY-SPECIFIC median 10.20% painter he

least 9.75% author he

Table 3.3 Most, median, and least frequent combinations of occupation
and pronoun for entities in the test split for each variant in KITMUS+.

In comparison with other datasets for coreference resolution, KITMUS is most sim-

ilar in size to analysis datasets such as GAP (Webster et al., 2018). In the BASE and

INFERENCE-TIME BACKGROUND variants, each instance contains eight annotated en-

tity mentions: one for each of the four entities conveying entity-specific knowledge

such as “Urbanek is an architect” and one placing the entity in a situation with the

other entities, such as “Urbanek, Petterson, Bertucci, and Klem met at the bus sta-

tion.” In addition to the entity mentions, there is a pronoun mention triggering the

coreference, bringing the total number of annotated mentions to nine for the BASE and

INFERENCE-TIME BACKGROUND variants. A comparison of size statistics with other

coreference resolution datasets is shown in Table 3.4.

In terms of average words and mentions per document, KITMUS+ is comparable

with other datasets drawn from natural text. OntoNotes has a higher relative density of

annotated mentions since it annotates not only pronoun coreference, but coreferences

between all types of mentions (Hovy et al., 2006). Like KITMUS+, GAP, WSC, and
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Dataset Number of Documents Average per Document

Train Validation Test Words Mentions

OntoNotes 2802 343 348 467 56
GAP 2000 400 2000 95 3
WSC 0 0 271 16 3
Quoref 3771 454 477 384 5

KITMUS+ 2000 400 2000 115 9†

Table 3.4 Size statistics of KITMUS+ in comparison with other coreference
resolution datasets. Statistics for other datasets adapted from Dasigi et al.
(2019) and Toshniwal et al. (2021). †The PRETRAIN-TIME ENTITY-SPECIFIC

variant only has five annotated mentions since entity-specific knowledge is
not provided at inference time.

Quoref present pronoun coreference resolution tasks and have a comparable mention

density (Rahman and Ng, 2012; Webster et al., 2018; Dasigi et al., 2019).

3.3.2 Human Validation Study

To investigate whether human assessors agree on the resolution of our test cases and

whether this resolution is in agreement with the automatically generated labels, we

conduct a human validation study. We also investigate whether our assumption that

both background and entity-specific knowledge are required to resolve the cases by

including instances where the knowledge text is not provided to human participants.

For the validation study, we created a multiple-choice questionnaire by randomly

selecting instances from the BASE and INFERENCE-TIME BACKGROUND variants with

differing number of entities from each split (e.g., validation). Additionally, we in-

cluded one instance from each variant and with each number of entities where the

participants were only given the task text and not the accompanying knowledge text.

A total of 96 sampled instances were presented to six different participants in random
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order.

Variant Occupation Situation With Knowledge Without Knowledge

BASE
Real Real

0.93 0.00
BASE without noise† 0.91 0.00
BASE with redundant knowledge† 1.00 0.00

INFERENCE-TIME BACKGROUND Real CharFict 1.00 0.00
WordFict 0.98 0.00

INFERENCE-TIME BACKGROUND CharFict
Real 0.98 0.00
CharFict 0.98 0.00
WordFict 0.96 0.06

Table 3.5 Accuracy on all variants aggregated over subtasks, splits, and
participants. Random performance is 0.25. Human participants could select
“can’t say,” which is never in agreement with the automatically generated
labels. Experiments marked with † are from the ablation experiments in
Section 4.3.

A high inter-annotator agreement of 0.938 as measured by Fleiss’ Kappa (Fleiss

et al., 2003) leads us to believe that human participants agree on the resolution of

KITMUS test cases. We use accuracy as a measure of agreement with the automati-

cally generated labels and find that mean accuracy aggregated over all participants

and subtasks is higher than 0.9 for all variants when the knowledge text is given. As

expected, when neither background nor entity-specific knowledge are given, accuracy

is below 0.1 for all variants, since most participants indicate that the question cannot

be answered. This suggests that there are no inadvertent cues that can be exploited by

humans to solve the task without having access to the entity-specific knowledge and

background knowledge contained in the knowledge text.

The study participants were undergraduate and graduate students with fluency

in English which were recruited via an institution-wide open call. The participants

were compensated with the equivalent of 12 USD10 for their participation. The study

was approved by the institution’s ethics review board and the participants gave their

written consent via a form.
10Matches the minimum wage in the participants’ demographic
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The participants were tasked to resolve the coreferences in a randomly sampled

subset of KITMUS texts. The task is presented to the participants as a multiple choice

questionnaire. The participants are given gold mentions and have to select the an-

tecedent that is referred to by the pronoun. The answer options include the names

of all mentioned entities and a “can’t say” option to indicate that the question is not

answerable. The questionnaire contained 96 questions to be completed in 60 minutes,

which was generous for most participants.

The human validation was conducted using Google forms. The participants are

introduced to the task with examples as shown in Figure 3.3.

(a) Top Half (b) Bottom Half
Figure 3.3 Introduction of the questionnaire used in the human validation
study.

This is followed by 96 questions where the participants have to choose one option

among all entity names and the option “can’t say,” which indicates that the task cannot

be solved for this instance. The aggregated results of the validation study are shown

in Table 3.5.
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3.3.3 Pretrain-Time Knowledge Availability

Controlling the availability of knowledge from pretrain-time sources is inherently un-

reliable for pretrained large language models such as BERT and ELMo, since the train-

ing corpus is large and unstructured (Devlin et al., 2019). A useful tool for determining

whether a LLM has access to a certain fact is the LAMA probe as proposed by Petroni

et al. (2019) and described in Section 2.1.2.

A LAMA probe uses LLMs’ ability to solve “fill-in-the-blank” cloze statements to

test whether a model can fill in a certain [MASK] token that requires specific knowl-

edge. The idea is that the model can only select the correct token among a large number

of possibilities if the knowledge is stored in its parameters, which were determined at

pretrain-time.

For the real-world entities in the PRETRAIN-TIME ENTITY-SPECIFIC variant, we fil-

tered based on a LAMA probe (Petroni et al., 2019) and can therefore be certain that the

knowledge is available in the parameters. However, the background knowledge about

occupations that we assume to be pretrain-time knowledge did not go through such a

filtering process.

To verify that the pretrained LLMs evaluated in this work contain background

knowledge mapping occupations to situations, we run a LAMA probe on BERT and

ELMo with the template The work of a ___ is {situation}., where {situation}

is a occupation description such as “acting in a play or movie”. We compare the prob-

abilities the LLMs assigned to all single-token occupation names used in KITMUS+

(probing for multi-token words is not supported by LAMA).

BERT assigned higher probabilities to the correct occupation than to any other

occupation for 90% of occupations, suggesting that it is reasonable to assume back-

ground knowledge about occupations to be pretrain-time knowledge for BERT and

other similar-sized Transformer (Vaswani et al., 2017) language models.

ELMo assigned the highest probability to the correct occupation for only 45% oc-
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cupations. This might indicate that ELMo has memorized background knowledge

about occupations to a lesser degree due to its smaller parameter count (93.6 million to

bert-large’s 360 million parameters). The findings are consistent with prior work

which reported ELMo to be worse at recalling facts than BERT (Petroni et al., 2019).
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Chapter 4

Experiments

We distinguish two sets of experiments: the main experiments, which are conducted

on the three main variants of the KITMUS+ test suite (BASE, INFERENCE-TIME BACK-

GROUND, PRETRAIN-TIME ENTITY-SPECIFIC) and ablation experiments, which inves-

tigate alternatives to the design choices made in the creation of this dataset.

In this chapter, we first describe the experimental setup including evaluated mod-

els. Then, we display the results of the main experiments and their implications. Fi-

nally, we present a range of ablation experiments and contextualize their results.

4.1 Experimental Setup

4.1.1 Model Selection

For the main experiments, we evaluate two state-of-the-art coreference resolution mod-

els using pretrained LLMs on the KITMUS+ test suite. We choose among a pool of large

models that are intended for the task of general coreference resolution, which is com-

monly trained and evaluated on the large OntoNotes corpus (Hovy et al., 2006) in

the CoNLL 2012 format (Pradhan et al., 2012). Among these, we include BERT4Coref

(Joshi et al., 2019) as an example of a state-of-the-art models on OntoNotes as well as
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C2F (Lee et al., 2018), which is the direct successor to the first end-to-end neural coref-

erence resolution model (Lee et al., 2017). BERT4Coref uses BERT (Devlin et al., 2019)

as part of its architecture and C2F uses ELMo (Peters et al., 2018) as its base LLM.

For the ablation experiments, we also consider models that are specialized for pro-

noun coreference resolution and adapted to the GAP format (Webster et al., 2018),

which contains less detailed annotations than the CoNLL format. For more details

on the CoNLL and GAP format, see Section 2.2.2.

Among the GAP pronoun resolution models, we include GREP (Attree, 2019), the

winner of the GAP Kaggle competition as well as PeTra (Toshniwal et al., 2020), a

memory-augmented model. Both GAP format models use BERT as part of their archi-

tecture.

Table 4.1 shows an overview of the evaluated models, their LLMs, and parameter

counts.

Model Proposed by Format LLM Parameters

BERT4Coref Joshi et al. (2019) CoNLL bert-large 340M
C2F Lee et al. (2018) elmo-original 93.6M

GREP Attree (2019) GAP bert-large 340M
PeTra Toshniwal et al. (2020) bert-large 340M

Table 4.1 Evaluated models and LLMs with annotation format and param-
eter count in million (M).

4.1.2 Training

We conduct task-specific training with all models on the train split of each KITMUS+

variants using their best reported hyperparameters, which are displayed in Table 4.2.

The larger general coreference models BERT4Coref and C2F are conventionally not

trained on datasets with just 2000 train instances such as GAP or KITMUS+, but rather

trained on OntoNotes and then evaluated on smaller datasets (Joshi et al., 2019). How-
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Model Optimizer Learning Rate FFNN Size Dropout Rate

BERT4Coref Adam 2 · 10−4 1000 0.3
C2F Adam 1 · 10−3 150 0.2

GREP Adam 4 · 10−6 1024 0.1
PeTra Adam 1 · 10−3 300 0.5

Table 4.2 Best reported hyperaparameters for evaluated models. Adam is
the optimizer proposed by Kingma and Ba (2015). Dropout is implemented
as proposed by Srivastava et al. (2014).

ever, since coreference cases in KITMUS+ diverge significantly from those in OntoNotes,

training on OntoNotes not necessarily effect for our task. We still include an ablation

study with OntoNotes-trained models in Section 4.3.2.

Since training with different seeds can induce variance into the results, we report

mean metrics over six runs for all trained models. We train the GAP format models

models—PeTra and GREP—only on the KITMUS+ version with two entities following

the constraints of the GAP format.

We train our models in a compute cluster infrastructure on Nvidia Quadro RTX

8000 GPUs. For BERT4Coref, training on the train split of one KITMUS+ variant took

about 8 hours per run. For C2F it took about 16 hours. The training of GREP took 18

hours. The training of smaller models and inference on pretrained models took about

4 hours per run.

4.1.3 Evaluation

We evaluate all models on the KITMUS+ test split of each variant. During inference,

CoNLL format models predict coreference clusters over all tokens in a text.

Pronoun Accuracy: The main metric of evaluation is pronoun accuracy: A sample

was predicted correctly if the pronoun was assigned to the same coreference cluster as
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the correct antecedent and to no other coreference clusters. Accuracy is then the ratio

e of correctly predicted samples.

Antecedent F1: In the ablation experiments, we also consider the antecedent classi-

fication F1 metric, which is typically used for pronoun coreference resolution datasets

such as GAP (Webster et al., 2018). It considers the coreference between each candidate

antecedent mention and the pronoun as a binary classification decision i.e., for a text

with n entities, it evaluates the correctness of n binary predictions.

Precision, recall, and F1 score are determined by separating all binary predictions

into four categories based on the gold labels (Jurafsky and Martin, 2023): a prediction

can be either count towards the true positives (tp), false positives (fp), true negatives

(tn), or false negatives (fn). Given that, the following definitions hold:

precision =
tp

tp+ fp

recall =
tp

tp+ fn

F1 =
2 · precision · recall
precision + recall

In other words, F1 score is defined as the harmonic mean of precision and recall.

Random baseline: We compare against a random baseline, which is implemented

as random choice among gold candidate mentions. This baseline accuracy is usually

0.25 given a choice among four entities. Note that it is still possible for a trained model

to be worse than this random baseline, since the random choice presupposes access to

gold mentions, while a model would have to do perfectly accurate mention detection

to achieve a similar performance.
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4.2 Main Experiments

Variant Knowledge Source by Type Accuracy

Background Entity-specific C2F BERT4Coref

Base Pretrain Inference 0.48 0.94
ITB Inference Inference 0.08 - 0.18 0.25 - 0.43
PTES Pretrain Pretrain 0.45 0.75

Table 4.3 Mean accuracy by model and variant aggregated over six train-
ing runs. ITB results are range over fictional subvariants. Standard devia-
tion is ≤ 0.06 for all values. Random baseline accuracy for this four entity
variant is 0.25 assuming gold mention detection.

Main experiment results for all three variants are displayed in Table 4.3. On the

BASE variant, both BERT4Coref and C2F demonstrate the ability to reason over knowl-

edge observed at pretrain and inference time. However, differing performances on the

INFERENCE-TIME BACKGROUND and PRETRAIN-TIME ENTITY-SPECIFIC variants in-

dicate that the usefulness of knowledge in a source seems to depend on the knowledge

type: background knowledge is more useful when drawn from pretrain-time parame-

ters, while knowledge about entities seems to be better observed at inference time. In

the following sections, we provide a detailed breakdown of observations and interpre-

tations of the main experiments.

Observations

BASE variant performance: Both BERT4Coref and C2F clearly outperform the random

baseline of 0.25, with BERT4Coref reaching a near perfect accuracy on the BASE variant.

This suggests that both models have the ability to draw background knowledge from

their parameters, entity-specific knowledge from the inference-time inputs, and reason

over them on-the-fly with task-specific training.

INFERENCE-TIME BACKGROUND variant performance: On the INFERENCE-TIME
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BACKGROUND variant, both models fail to reliably outperform the random baseline,

with C2F falling belong it. Both models’ performances seem to depend on the kind of

fictionality employed (word-level or character-level fictional occupations). A detailed

breakdown of the range values reported here for the INFERENCE-TIME BACKGROUND

variant can be found in Table 4.4.

PRETRAIN-TIME ENTITY-SPECIFIC variant performance: Performance using only

pretrain-time knowledge about well-known entities is slightly worse than BASE vari-

ant performance for both models. The performance difference seems to be larger for

BERT4Coref than for C2F.

Cross-model performance comparison: BERT4Coref seems to consistently perform

better than C2F on all variants.

Cross-variant performance comparison: Among all the mappings of background

and entity-specific knowledge to different knowledge sources, the BASE variant con-

figuration of pretrain-time background knowledge and inference-time entity-specific

knowledge seems to result in the best performance for both models.

Interpretations

Underlying pretrained LLMs: BERT4Coref seems to consistently outperform C2F.

This might be due to the difference in their underlying pretrained LLMs: BERT4Coref

uses the Transformer architecture (Vaswani et al., 2017), which has been shown to be

effective at reasoning tasks presented in natural language form (Clark et al., 2021) and

utilizing information presented in inference-time contexts (Petroni et al., 2020), while

C2F uses ELMo (Peters et al., 2018), which is much smaller.

Additionally, BERT and ELMo might differ in their memorization of background

knowledge about occupations. A LAMA probe (Petroni et al., 2019) ran for model val-

idation showed that BERT is more likely to contain the background knowledge com-

pared to ELMo (see Section 3.3.3). This might contribute to the better performance of
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BERT-based on knowledge intensive tasks such as KITMUS+, however, it cannot ex-

plain the worse performance of C2F on the INFERENCE-TIME BACKGROUND variant,

where all knowledge is inference-time.

Fictional occupations in INFERENCE-TIME BACKGROUND: Both models perform

consistently poorly on the INFERENCE-TIME BACKGROUND variant with fictional oc-

cupations and situations. An example of character-level fictional occupation knowl-

edge erroneously answered by both models is shown below:

The work of a vangiwer is aughuing ominly. Pirkle is a peeptoer. Alspaugh is a vangiwer.

McCants is a towcer. The work of a peeptoer is mepuing cevely. Ostrander is a culfaer. The

work of a culfaer is gholicoring intairly. The work of a towcer is lopening ackly. McCants,

Ostrander, Alspaugh, and Pirkle started a conversation at the high intensity class. The

classes usually begin before work. When a question related to lopening ackly arose, he

offered a professional opinion. [Correct answer: McCants; BERT4Coref: Alspaugh; C2F:

pronoun not part of any cluster]

One possible reason for particularly bad performance of BERT on character-level

fictional situations could be BERT’s tokenization strategy, which involves pooling sub-

word representations (Devlin et al., 2019). In character-level fictional words, the sub-

words are meaningless, rendering their representations unhelpful. This is consistent

with previous work showing that representations of LLMs for character-level fictional

“Jabberwocky” words are less useful (Kasai and Frank, 2019) and that the presence

of out-of-vocabulary (OOV) tokens decreases performance of neural models for NLU

tasks (Schick and Schütze, 2020; Moon and Okazaki, 2020; He et al., 2021). C2F’s lower

than random baseline performance might similarly be explained with mention detec-

tion difficulties induced by the character-level fictional words.

Despite the character-fictional occupations and situations, it is still possible for

models to resolve the coreferences successfully in this setting. In the given example,

the pronoun “he” can be resolved by matching the situation “lopening ackly” to the oc-

cupation “towcer” (using the word overlap between the situations and the occupation
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Occupation Situation C2F BERT4Coref

Real CharFict 0.18 0.25
WordFict 0.08 0.48

CharFict
Real 0.08 0.43
CharFict 0.18 0.26
WordFict 0.11 0.38

Table 4.4 KITMUS+-trained accuracy on INFERENCE-TIME BACKGROUND

subvariants with four entities by fictionality. Random baseline performance
is 0.25.

descriptions) and identifying the correct entity associated with the occupation.

Humans can successfully make these inferences by matching fictional occupations

and situations. However, the evaluated systems do not perform better than a random

baseline in this setting. Our hope is that eventually, models should be able to handle

even knowledge presented in previously unknown terms. Given that languages are

forever growing, robustness to neologisms is crucial, considering that OOV words such

as new occupations like “TikToker” develop constantly.

Preferred mapping from type to sources: While apple-to-apple comparisons be-

tween the variants might not be possible due to confounding factors like fictional

words in the INFERENCE-TIME BACKGROUND variant and bias in the real-world en-

tities of the PRETRAIN-TIME ENTITY-SPECIFIC variant, cross-variant result differences

seem to suggest the same trend for both models: the usefulness of a knowledge source

seems to depend on the knowledge type. Background knowledge is more useful when

drawn from pretrain-time parameters, while knowledge about entities seems to be bet-

ter observed at inference time.

One possible explanation could be that LLMs observed different frequencies of un-

seen entities and occupations during language modeling pretraining, which result in a

difference in their ability to adapt to novel instances of those categories. This would be
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in line with the initial intuition behind creating the BASE variant described in Section

3.2.1.
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4.3 Ablation Experiments

In order to shed light on the effects of design decisions in the dataset creation process

and experimental setup, we run a series of ablation experiments on the data configura-

tion, evaluation protocol, and task format. We find that while a range of factors seems

to influence system performance on the proposed task, the trends observed in the main

experiments are robust to different design choices.

In particular, task-specific training on KITMUS+ with detailed annotations in the

CoNLL 2012 (Pradhan et al., 2012) seem to be a necessary preconditions for success

on our task. Results on BERT4Coref seem to be robust to dataset design choices such

as number of entities, presence of noise, and train set size, while C2F performance is

sensitive to small changes. We do not find consistent benefits to providing knowledge

redundantly in both sources. Our results are echoed by a different evaluation metric

and cannot be explained away through exploitation of root word overlap between oc-

cupations and situations. In the following, we provide a more detailed breakdown of

the different ablation experiments.

4.3.1 Data Ablation

Modification to Base Variant Accuracy

C2F BERT4Coref

(none) 0.48 0.94
3 instead of 4 entities 0.28 0.98
2 instead of 4 entities 0.52 0.99

no noise 0.24 0.92
5k instead of 2k train examples 0.24 0.94

Redundant background knowledge 0.09 0.96

Table 4.5 Base variant modifications mean accuracy by model aggregated
over six training runs. Standard deviation is ≤ 0.08 for all values. Random
baseline performance is 1

n where n is the number of entities (n = 4 except
where specified otherwise).
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Ablation experiments using modifications to the BASE variant dataset are displayed

in Table 4.5.

Number of Entities and Noise

We run ablation experiments with number of entities different than four (the default in

this work) and without noise statements, which are by default part of the task text.

The accuracy of both models generally increases as the number of entities decreases,

which is unsurprising since the more candidate entities there are, the less likely the

accidental selection of the correct entity becomes. However, C2F specifically does not

seem to reliably follow this pattern: performance with three instead of four entities is

below random baseline performance of 0.33, but with other entity counts it is generally

above.

In order to explore the effect of noise statements, we conduct additional experi-

ments on the BASE variant without noise. The removal of noise does not result in a

significant performance change for BERT4Coref, indicating that the model learns to ig-

nore the noise during finetuning. However, C2F performance seems to be sensitive to

the removal of noise statements.

The unintuitive performance drops of C2F might be attributed to a comparatively

high variance across the six training runs. Alternatively, C2F might be more sensitive

to sequence length changes, which affects the computation budget. There exists some

evidence (Wei et al., 2022b) that auto-regressive language models can benefit from an

increased sequence length and computation budget for reasoning tasks. Both decreas-

ing the number of entities and removing noise result in a smaller sequence length and

computation budget, which might contribute to the performance drop.
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Train Set Size

The size of the train set for KITMUS+, 2000, was chosen to mirror that of GAP (Webster

et al., 2018), another coreference resolution dataset that tests for a specific capability.

To evaluate whether this choice of train set size affected results significantly, we run a

ablation experiments on the BASE variant with a higher number of train samples.

Consistent with previous results, BERT4Coref performs well on this larger setting.

C2F seems to perform worse with more train data, which might indicate overfitting on

the train set. We release the KITMUS+ generation code to enable experimentation with

other train set sizes in future work.

Redundant Knowledge

In order to shed more light on the knowledge integration behavior, we run an ablation

experiment where background knowledge about occupations is made redundant by

being supplied both at pretrain-time and inference-time. BERT4Coref shows a slight

performance increase compared to the BASE variant, indicating that it might benefit

from this redundant information. However, C2F performance drops sharply to a level

below the random baseline.

One explanation for the performance drop of C2F might be that the background

knowledge explicitly provided at inference time conflicts with the knowledge con-

tained in the underlying LLM’s parameters. While we are confident in the validity

of the occupation descriptions used as resources, they are not exhaustive of the types

of activities a certain occupation entails. LLM behavior when confronted with knowl-

edge conflicts is the subject of active work (Longpre et al., 2021; Xie et al., 2023), but

many suggest that performance becomes unstable, which might explain the perfor-

mance drop. ELMo having memorized differing pretrain-time background knowl-

edge would also be consistent with the findings of the LAMA probe, which suggest

that ELMo’s pretrain-time knowledge base only agrees with 45% of the occupation
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description in KITMUS+ (see Section 3.3.3 for more details).

4.3.2 Evaluation Ablation

Ablation experiments on the BASE variant with modifications to the training and eval-

uation process are displayed in Table 4.6.

Train Data Evaluation Data Accuracy Antecedent F1

C2F BERT4Coref C2F BERT4Coref

Train Split Test Split 0.48 0.94 0.48 0.94
Train Split Train Split 1.00 1.00 1.00 1.00
OntoNotes Test Split 0.13 0.14 0.25 0.19

Train Split Test Split 0.46 0.92 0.46 0.92w/o RWO

Table 4.6 Mean metric by model aggregated over six training runs on KIT-
MUS base variant unless specified otherwise. RWO is short for Root Word
Overlap. Standard deviation is ≤ 0.08 for all values.

Train Set Evaluation

We find that evaluation on the train set yields perfect scores with all models, which

validates that models learn as intended during finetuning on the train split. The high

performance might even indicate overfitting and memorization, however given the

large parameter count of the models, this seems unlikely to adversely affect general-

ization (an overview of the parameter counts of the LLMs was shown in Table 4.1).

Generalisation from OntoNotes

Coreference resolution models are often used off-the-shelf with training on OntoNotes

(Hovy et al., 2006), since OntoNotes is considered to include most relevant corefer-

ence phenomena due to its size and generality. We therefore run an ablation with

OntoNotes-trained versions of BERT4Coref and C2F.
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The performance of OntoNotes-trained models is generally poor. This suggests that

when trained on general coreference resolution datasets, models learn to exploit sur-

face cues, which does not help when testing on KITMUS+ where such cues are removed.

Another factor might be the structure of the texts in KITMUS+, which are designed to

place knowledge in specific knowledge sources. This might affect models’ abilities to

form useful representations resulting in poor performance of OntoNotes-trained mod-

els. Given that the performance is even below random choice given gold mentions, the

mention detection abilities acquired on OntoNotes might not transfer to KITMUS+.

These failures suggest that training on “general” datasets is not necessarily enough

to induce knowledge integration from multiple knowledge sources. We conclude that

task-specific training is required to solve the KITMUS+ task for the evaluated coref-

erence models. This is also in line with recent work which suggests most coreference

resolution models do not generalize well beyond their intended training domain (Tosh-

niwal et al., 2021; Porada et al., 2023).

Root Word Overlap

One potential limitation of the two-hop task that KITMUS+ poses is that non-fictional

background knowledge like “firefighters put out fires” can often be inferred by a sim-

ple string matching heuristic. In this case, the natural occurrence of the root word

“fire” in both occupation and situation might enable models to solve the task without

having access to background knowledge. For other background knowledge such as

“judges preside over courts of law”, no obvious string-matching shortcuts exist.

An analysis of trigram overlaps in all occupation-situation pairs shows that 45% of

non-fictional occupation descriptions have at least one overlapping root word with the

associated occupation. As an ablation, we compute performance on the subset of test

instances that do not have any root word overlap. We find that while the subset perfor-

mance is slightly worse than the overall performance, the magnitude of the difference
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(±0.02 accuracy) is small enough to not affect the validity of the observed results.

Evaluation Metric

We report results with the alternative antecedent F1 metric described in Section 4.1.3

as opposed to pronoun accuracy. We find that both metrics are mostly in agreement.

In fact, the metric values only differ when model performance is so poor that the same

pronoun is predicted to be corefering with multiple separate named entities, which is

the case for some of the OntoNotes-trained model predictions.

As an example, if a model predicts both “Horner” and “Barlett” to be corefering

with the pronoun “she”, but in fact only “Barlett” corefers with “she”, pronoun accu-

racy would count this as a single incorrect pronoun prediction, while antecedent F1

score would count it as one incorrect antecedent prediction (“Horner”) and one correct

antecedent prediction (“Barlett”).

4.3.3 Format Ablation

Ablation experiments on the BASE variant provided in the GAP format are displayed

in Table 4.7.

Entities CoNLL Format GAP Format

C2F BERT4Coref PeTra GREP Random

4 entities 0.48 0.94 0.25
3 entities 0.28 0.98 0.33
2 entities 0.52 0.99 0.01 0.49 0.50

Table 4.7 Mean accuracy by model aggregated over six training runs. Ran-
dom is short for random choice among gold mentions. Standard deviation
is ≤ 0.08 for all values.

In order to evaluate the effect of the choice of the CoNLL format (Pradhan et al.,

2012), we run ablation experiments with comparable BERT-based models that accept
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the GAP format instead (Webster et al., 2018). The GAP format only allows for the

annotation of two entities, so we only report results with two entities for these models.

We find that performance is generally at random level or even worse for GAP for-

mat models. This might indicate that mention annotations in the knowledge text,

which are present in CoNLL format but absent in the GAP format, are important for

absorbing the entity-specific knowledge provided in the knowledge text of the BASE

variant. For more details on differences between CoNLL and GAP format, see Section

2.2.2.
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Chapter 5

Conclusion

Summary

In this work, we investigated the ability of LLM-based NLU systems to use knowledge

observed at pretrain and inference time to solve a coreference resolution task that re-

quires reasoning over knowledge of different types. For this purpose, we created the

KITMUS+ test suite, a collection of coreference resolution tasks with different mappings

of knowledge types to sources. We evaluated established LLM-based coreference res-

olution systems on the three main variants of the dataset and reported the results of

several ablation experiments.

Findings

Our results show that with task-specific training and detailed annotations, some LLM-

based NLU systems have the ability to reason over knowledge observed at pretrain

and inference time. For the proposed task, the usefulness of knowledge in a source

seems to depend on the knowledge type: background knowledge is more useful when

drawn from pretrain-time parameters, while knowledge about entities seems to be bet-
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ter observed at inference time. However, performance generally is sensitive to a range

of factors such as the task format and the underlying LLM’s size and architecture. We

do not find consistent benefits to providing knowledge redundantly both at pretrain

and inference time.

While these results represent experiments conducted on coreference resolution sys-

tems only, we believe they may have implications for LLM-based NLU systems in gen-

eral due to the reliance of coreference resolution systems on their underlying LLMs. If

different knowledge types have different preferred mappings to knowledge sources in

LLMs, a careful analysis of the knowledge types required for a task might be beneficial

for the design of future LLM-based NLU systems.

Limitations

Data diversity: As a template-generated dataset, KITMUS+ does not reflect the full

diversity of natural data. However, we do not attempt to emulate the diversity of

natural datasets. Instead, we believe that the advantages of using synthetic data for

diagnostic purposes outweigh the disadvantages. Templates facilitate control over the

source of each knowledge type, which would not be possible with natural datasets.

This allows us to isolate the model behavior we want to probe. We also take several

steps to add diversity, such as using multiple templates, sampling from large resource

pools, random shuffling of entities, addition of noise sentences, and canonical data

splits with non-overlapping templates and resources.

Result robustness: We report results averaged over six training runs for all set-

tings and report standard deviation values. However, while results for BERT4Coref

are stable, C2F’s performance appears to be sensitive to small changes in the experi-

mental setup as demonstrated in the ablation experiments. This may be due to the fact

that C2F was originally intended to be trained on larger datasets such as OntoNotes,
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rendering training on the smaller KITMUS+ dataset more susceptible to random varia-

tions. Nevertheless, we believe that the larger trends observed for both systems in this

work allow us to draw reliable conclusions about models’ behavior with respect to the

integration of pretrain-time and inference-time knowledge.

Outlook

With KITMUS+, we have proposed a resource that could be used in future work to

explore the knowledge integration abilities of more advanced NLU models and their

underlying LLMs. Models can also be finetuned on our dataset to encourage knowl-

edge integration across different sources. Finally, we hope our results can serve as

guidance for architects of future NLU systems for design decisions such as the choice

of whether to provide knowledge relevant for a given task as part of the pretraining

data or as part of inference-time inputs.
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